This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a multiply-add of two decimal integers M and N against a fixed multiplicand P (no carry). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numma.1 | ⊢ 𝑇 ∈ ℕ0 | |
| numma.2 | ⊢ 𝐴 ∈ ℕ0 | ||
| numma.3 | ⊢ 𝐵 ∈ ℕ0 | ||
| numma.4 | ⊢ 𝐶 ∈ ℕ0 | ||
| numma.5 | ⊢ 𝐷 ∈ ℕ0 | ||
| numma.6 | ⊢ 𝑀 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) | ||
| numma.7 | ⊢ 𝑁 = ( ( 𝑇 · 𝐶 ) + 𝐷 ) | ||
| numma.8 | ⊢ 𝑃 ∈ ℕ0 | ||
| numma.9 | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐶 ) = 𝐸 | ||
| numma.10 | ⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = 𝐹 | ||
| Assertion | numma | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.1 | ⊢ 𝑇 ∈ ℕ0 | |
| 2 | numma.2 | ⊢ 𝐴 ∈ ℕ0 | |
| 3 | numma.3 | ⊢ 𝐵 ∈ ℕ0 | |
| 4 | numma.4 | ⊢ 𝐶 ∈ ℕ0 | |
| 5 | numma.5 | ⊢ 𝐷 ∈ ℕ0 | |
| 6 | numma.6 | ⊢ 𝑀 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) | |
| 7 | numma.7 | ⊢ 𝑁 = ( ( 𝑇 · 𝐶 ) + 𝐷 ) | |
| 8 | numma.8 | ⊢ 𝑃 ∈ ℕ0 | |
| 9 | numma.9 | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐶 ) = 𝐸 | |
| 10 | numma.10 | ⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = 𝐹 | |
| 11 | 6 | oveq1i | ⊢ ( 𝑀 · 𝑃 ) = ( ( ( 𝑇 · 𝐴 ) + 𝐵 ) · 𝑃 ) |
| 12 | 11 7 | oveq12i | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( ( ( 𝑇 · 𝐴 ) + 𝐵 ) · 𝑃 ) + ( ( 𝑇 · 𝐶 ) + 𝐷 ) ) |
| 13 | 1 | nn0cni | ⊢ 𝑇 ∈ ℂ |
| 14 | 2 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 15 | 8 | nn0cni | ⊢ 𝑃 ∈ ℂ |
| 16 | 14 15 | mulcli | ⊢ ( 𝐴 · 𝑃 ) ∈ ℂ |
| 17 | 4 | nn0cni | ⊢ 𝐶 ∈ ℂ |
| 18 | 13 16 17 | adddii | ⊢ ( 𝑇 · ( ( 𝐴 · 𝑃 ) + 𝐶 ) ) = ( ( 𝑇 · ( 𝐴 · 𝑃 ) ) + ( 𝑇 · 𝐶 ) ) |
| 19 | 13 14 15 | mulassi | ⊢ ( ( 𝑇 · 𝐴 ) · 𝑃 ) = ( 𝑇 · ( 𝐴 · 𝑃 ) ) |
| 20 | 19 | oveq1i | ⊢ ( ( ( 𝑇 · 𝐴 ) · 𝑃 ) + ( 𝑇 · 𝐶 ) ) = ( ( 𝑇 · ( 𝐴 · 𝑃 ) ) + ( 𝑇 · 𝐶 ) ) |
| 21 | 18 20 | eqtr4i | ⊢ ( 𝑇 · ( ( 𝐴 · 𝑃 ) + 𝐶 ) ) = ( ( ( 𝑇 · 𝐴 ) · 𝑃 ) + ( 𝑇 · 𝐶 ) ) |
| 22 | 21 | oveq1i | ⊢ ( ( 𝑇 · ( ( 𝐴 · 𝑃 ) + 𝐶 ) ) + ( ( 𝐵 · 𝑃 ) + 𝐷 ) ) = ( ( ( ( 𝑇 · 𝐴 ) · 𝑃 ) + ( 𝑇 · 𝐶 ) ) + ( ( 𝐵 · 𝑃 ) + 𝐷 ) ) |
| 23 | 13 14 | mulcli | ⊢ ( 𝑇 · 𝐴 ) ∈ ℂ |
| 24 | 3 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 25 | 23 24 15 | adddiri | ⊢ ( ( ( 𝑇 · 𝐴 ) + 𝐵 ) · 𝑃 ) = ( ( ( 𝑇 · 𝐴 ) · 𝑃 ) + ( 𝐵 · 𝑃 ) ) |
| 26 | 25 | oveq1i | ⊢ ( ( ( ( 𝑇 · 𝐴 ) + 𝐵 ) · 𝑃 ) + ( ( 𝑇 · 𝐶 ) + 𝐷 ) ) = ( ( ( ( 𝑇 · 𝐴 ) · 𝑃 ) + ( 𝐵 · 𝑃 ) ) + ( ( 𝑇 · 𝐶 ) + 𝐷 ) ) |
| 27 | 23 15 | mulcli | ⊢ ( ( 𝑇 · 𝐴 ) · 𝑃 ) ∈ ℂ |
| 28 | 13 17 | mulcli | ⊢ ( 𝑇 · 𝐶 ) ∈ ℂ |
| 29 | 24 15 | mulcli | ⊢ ( 𝐵 · 𝑃 ) ∈ ℂ |
| 30 | 5 | nn0cni | ⊢ 𝐷 ∈ ℂ |
| 31 | 27 28 29 30 | add4i | ⊢ ( ( ( ( 𝑇 · 𝐴 ) · 𝑃 ) + ( 𝑇 · 𝐶 ) ) + ( ( 𝐵 · 𝑃 ) + 𝐷 ) ) = ( ( ( ( 𝑇 · 𝐴 ) · 𝑃 ) + ( 𝐵 · 𝑃 ) ) + ( ( 𝑇 · 𝐶 ) + 𝐷 ) ) |
| 32 | 26 31 | eqtr4i | ⊢ ( ( ( ( 𝑇 · 𝐴 ) + 𝐵 ) · 𝑃 ) + ( ( 𝑇 · 𝐶 ) + 𝐷 ) ) = ( ( ( ( 𝑇 · 𝐴 ) · 𝑃 ) + ( 𝑇 · 𝐶 ) ) + ( ( 𝐵 · 𝑃 ) + 𝐷 ) ) |
| 33 | 22 32 | eqtr4i | ⊢ ( ( 𝑇 · ( ( 𝐴 · 𝑃 ) + 𝐶 ) ) + ( ( 𝐵 · 𝑃 ) + 𝐷 ) ) = ( ( ( ( 𝑇 · 𝐴 ) + 𝐵 ) · 𝑃 ) + ( ( 𝑇 · 𝐶 ) + 𝐷 ) ) |
| 34 | 9 | oveq2i | ⊢ ( 𝑇 · ( ( 𝐴 · 𝑃 ) + 𝐶 ) ) = ( 𝑇 · 𝐸 ) |
| 35 | 34 10 | oveq12i | ⊢ ( ( 𝑇 · ( ( 𝐴 · 𝑃 ) + 𝐶 ) ) + ( ( 𝐵 · 𝑃 ) + 𝐷 ) ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |
| 36 | 12 33 35 | 3eqtr2i | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |