This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a multiply-add of two decimal integers M and N against a fixed multiplicand P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numma.1 | |- T e. NN0 |
|
| numma.2 | |- A e. NN0 |
||
| numma.3 | |- B e. NN0 |
||
| numma.4 | |- C e. NN0 |
||
| numma.5 | |- D e. NN0 |
||
| numma.6 | |- M = ( ( T x. A ) + B ) |
||
| numma.7 | |- N = ( ( T x. C ) + D ) |
||
| numma2c.8 | |- P e. NN0 |
||
| numma2c.9 | |- F e. NN0 |
||
| numma2c.10 | |- G e. NN0 |
||
| numma2c.11 | |- ( ( P x. A ) + ( C + G ) ) = E |
||
| numma2c.12 | |- ( ( P x. B ) + D ) = ( ( T x. G ) + F ) |
||
| Assertion | numma2c | |- ( ( P x. M ) + N ) = ( ( T x. E ) + F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.1 | |- T e. NN0 |
|
| 2 | numma.2 | |- A e. NN0 |
|
| 3 | numma.3 | |- B e. NN0 |
|
| 4 | numma.4 | |- C e. NN0 |
|
| 5 | numma.5 | |- D e. NN0 |
|
| 6 | numma.6 | |- M = ( ( T x. A ) + B ) |
|
| 7 | numma.7 | |- N = ( ( T x. C ) + D ) |
|
| 8 | numma2c.8 | |- P e. NN0 |
|
| 9 | numma2c.9 | |- F e. NN0 |
|
| 10 | numma2c.10 | |- G e. NN0 |
|
| 11 | numma2c.11 | |- ( ( P x. A ) + ( C + G ) ) = E |
|
| 12 | numma2c.12 | |- ( ( P x. B ) + D ) = ( ( T x. G ) + F ) |
|
| 13 | 8 | nn0cni | |- P e. CC |
| 14 | 1 2 3 | numcl | |- ( ( T x. A ) + B ) e. NN0 |
| 15 | 6 14 | eqeltri | |- M e. NN0 |
| 16 | 15 | nn0cni | |- M e. CC |
| 17 | 13 16 | mulcomi | |- ( P x. M ) = ( M x. P ) |
| 18 | 17 | oveq1i | |- ( ( P x. M ) + N ) = ( ( M x. P ) + N ) |
| 19 | 2 | nn0cni | |- A e. CC |
| 20 | 19 13 | mulcomi | |- ( A x. P ) = ( P x. A ) |
| 21 | 20 | oveq1i | |- ( ( A x. P ) + ( C + G ) ) = ( ( P x. A ) + ( C + G ) ) |
| 22 | 21 11 | eqtri | |- ( ( A x. P ) + ( C + G ) ) = E |
| 23 | 3 | nn0cni | |- B e. CC |
| 24 | 23 13 | mulcomi | |- ( B x. P ) = ( P x. B ) |
| 25 | 24 | oveq1i | |- ( ( B x. P ) + D ) = ( ( P x. B ) + D ) |
| 26 | 25 12 | eqtri | |- ( ( B x. P ) + D ) = ( ( T x. G ) + F ) |
| 27 | 1 2 3 4 5 6 7 8 9 10 22 26 | nummac | |- ( ( M x. P ) + N ) = ( ( T x. E ) + F ) |
| 28 | 18 27 | eqtri | |- ( ( P x. M ) + N ) = ( ( T x. E ) + F ) |