This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add two decimal integers M and N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numma.1 | ⊢ 𝑇 ∈ ℕ0 | |
| numma.2 | ⊢ 𝐴 ∈ ℕ0 | ||
| numma.3 | ⊢ 𝐵 ∈ ℕ0 | ||
| numma.4 | ⊢ 𝐶 ∈ ℕ0 | ||
| numma.5 | ⊢ 𝐷 ∈ ℕ0 | ||
| numma.6 | ⊢ 𝑀 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) | ||
| numma.7 | ⊢ 𝑁 = ( ( 𝑇 · 𝐶 ) + 𝐷 ) | ||
| numadd.8 | ⊢ ( 𝐴 + 𝐶 ) = 𝐸 | ||
| numadd.9 | ⊢ ( 𝐵 + 𝐷 ) = 𝐹 | ||
| Assertion | numadd | ⊢ ( 𝑀 + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.1 | ⊢ 𝑇 ∈ ℕ0 | |
| 2 | numma.2 | ⊢ 𝐴 ∈ ℕ0 | |
| 3 | numma.3 | ⊢ 𝐵 ∈ ℕ0 | |
| 4 | numma.4 | ⊢ 𝐶 ∈ ℕ0 | |
| 5 | numma.5 | ⊢ 𝐷 ∈ ℕ0 | |
| 6 | numma.6 | ⊢ 𝑀 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) | |
| 7 | numma.7 | ⊢ 𝑁 = ( ( 𝑇 · 𝐶 ) + 𝐷 ) | |
| 8 | numadd.8 | ⊢ ( 𝐴 + 𝐶 ) = 𝐸 | |
| 9 | numadd.9 | ⊢ ( 𝐵 + 𝐷 ) = 𝐹 | |
| 10 | 1 2 3 | numcl | ⊢ ( ( 𝑇 · 𝐴 ) + 𝐵 ) ∈ ℕ0 |
| 11 | 6 10 | eqeltri | ⊢ 𝑀 ∈ ℕ0 |
| 12 | 11 | nn0cni | ⊢ 𝑀 ∈ ℂ |
| 13 | 12 | mulridi | ⊢ ( 𝑀 · 1 ) = 𝑀 |
| 14 | 13 | oveq1i | ⊢ ( ( 𝑀 · 1 ) + 𝑁 ) = ( 𝑀 + 𝑁 ) |
| 15 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 16 | 2 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 17 | 16 | mulridi | ⊢ ( 𝐴 · 1 ) = 𝐴 |
| 18 | 17 | oveq1i | ⊢ ( ( 𝐴 · 1 ) + 𝐶 ) = ( 𝐴 + 𝐶 ) |
| 19 | 18 8 | eqtri | ⊢ ( ( 𝐴 · 1 ) + 𝐶 ) = 𝐸 |
| 20 | 3 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 21 | 20 | mulridi | ⊢ ( 𝐵 · 1 ) = 𝐵 |
| 22 | 21 | oveq1i | ⊢ ( ( 𝐵 · 1 ) + 𝐷 ) = ( 𝐵 + 𝐷 ) |
| 23 | 22 9 | eqtri | ⊢ ( ( 𝐵 · 1 ) + 𝐷 ) = 𝐹 |
| 24 | 1 2 3 4 5 6 7 15 19 23 | numma | ⊢ ( ( 𝑀 · 1 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |
| 25 | 14 24 | eqtr3i | ⊢ ( 𝑀 + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |