This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Examples for walks, trails and paths
ntrl2v2e
Metamath Proof Explorer
Description: A walk which is not a trail: In a graph with two vertices and one edge
connecting these two vertices, to go from one vertex to the other and
back to the first vertex via the same/only edge is a walk, see
wlk2v2e , but not a trail. Notice that G is a simple graph
(without loops) only if X =/= Y . (Contributed by Alexander van der
Vekens , 22-Oct-2017) (Revised by AV , 8-Jan-2021) (Proof shortened by AV , 30-Oct-2021)
Ref
Expression
Hypotheses
wlk2v2e.i
⊢ I = 〈“ X Y ”〉
wlk2v2e.f
⊢ F = 〈“ 0 0 ”〉
wlk2v2e.x
⊢ X ∈ V
wlk2v2e.y
⊢ Y ∈ V
wlk2v2e.p
⊢ P = 〈“ X Y X ”〉
wlk2v2e.g
⊢ G = X Y I
Assertion
ntrl2v2e
⊢ ¬ F Trails ⁡ G P
Proof
Step
Hyp
Ref
Expression
1
wlk2v2e.i
⊢ I = 〈“ X Y ”〉
2
wlk2v2e.f
⊢ F = 〈“ 0 0 ”〉
3
wlk2v2e.x
⊢ X ∈ V
4
wlk2v2e.y
⊢ Y ∈ V
5
wlk2v2e.p
⊢ P = 〈“ X Y X ”〉
6
wlk2v2e.g
⊢ G = X Y I
7
0z
⊢ 0 ∈ ℤ
8
1z
⊢ 1 ∈ ℤ
9
7 8 7
3pm3.2i
⊢ 0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ∈ ℤ
10
0ne1
⊢ 0 ≠ 1
11
s2prop
⊢ 0 ∈ ℤ ∧ 0 ∈ ℤ → 〈“ 0 0 ”〉 = 0 0 1 0
12
7 7 11
mp2an
⊢ 〈“ 0 0 ”〉 = 0 0 1 0
13
2 12
eqtri
⊢ F = 0 0 1 0
14
13
fpropnf1
⊢ 0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 0 ≠ 1 → Fun ⁡ F ∧ ¬ Fun ⁡ F -1
15
9 10 14
mp2an
⊢ Fun ⁡ F ∧ ¬ Fun ⁡ F -1
16
15
simpri
⊢ ¬ Fun ⁡ F -1
17
16
intnan
⊢ ¬ F Walks ⁡ G P ∧ Fun ⁡ F -1
18
istrl
⊢ F Trails ⁡ G P ↔ F Walks ⁡ G P ∧ Fun ⁡ F -1
19
17 18
mtbir
⊢ ¬ F Trails ⁡ G P