This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function, given by an unordered pair of ordered pairs, which is not injective/one-to-one. (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 8-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fpropnf1.f | ⊢ 𝐹 = { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } | |
| Assertion | fpropnf1 | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( Fun 𝐹 ∧ ¬ Fun ◡ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpropnf1.f | ⊢ 𝐹 = { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } | |
| 2 | id | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ) | |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ) |
| 5 | id | ⊢ ( 𝑍 ∈ 𝑊 → 𝑍 ∈ 𝑊 ) | |
| 6 | 5 5 | jca | ⊢ ( 𝑍 ∈ 𝑊 → ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ) |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ) |
| 9 | simpr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ≠ 𝑌 ) | |
| 10 | 4 8 9 | 3jca | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
| 11 | funprg | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → Fun { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → Fun { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ) |
| 13 | 1 | funeqi | ⊢ ( Fun 𝐹 ↔ Fun { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ) |
| 14 | 12 13 | sylibr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → Fun 𝐹 ) |
| 15 | neneq | ⊢ ( 𝑋 ≠ 𝑌 → ¬ 𝑋 = 𝑌 ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ¬ 𝑋 = 𝑌 ) |
| 17 | fprg | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) | |
| 18 | 10 17 | syl | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
| 19 | 1 | eqcomi | ⊢ { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } = 𝐹 |
| 20 | 19 | feq1i | ⊢ ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ↔ 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
| 21 | 18 20 | sylib | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
| 22 | df-f1 | ⊢ ( 𝐹 : { 𝑋 , 𝑌 } –1-1→ { 𝑍 , 𝑍 } ↔ ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ Fun ◡ 𝐹 ) ) | |
| 23 | dff13 | ⊢ ( 𝐹 : { 𝑋 , 𝑌 } –1-1→ { 𝑍 , 𝑍 } ↔ ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 24 | fveqeq2 | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ) ) | |
| 25 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) | |
| 26 | 24 25 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ) ) |
| 27 | 26 | ralbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ) ) |
| 28 | fveqeq2 | ⊢ ( 𝑥 = 𝑌 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) ) ) | |
| 29 | eqeq1 | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 = 𝑦 ↔ 𝑌 = 𝑦 ) ) | |
| 30 | 28 29 | imbi12d | ⊢ ( 𝑥 = 𝑌 → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) |
| 31 | 30 | ralbidv | ⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) |
| 32 | 27 31 | ralprg | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) ) |
| 33 | 32 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 36 | 35 | eqeq2d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 37 | eqeq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑋 ) ) | |
| 38 | 36 37 | imbi12d | ⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ) ) |
| 39 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 40 | 39 | eqeq2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 41 | eqeq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) | |
| 42 | 40 41 | imbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 43 | 38 42 | ralprg | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) |
| 44 | 35 | eqeq2d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 45 | eqeq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝑌 = 𝑦 ↔ 𝑌 = 𝑋 ) ) | |
| 46 | 44 45 | imbi12d | ⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ) ) |
| 47 | 39 | eqeq2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 48 | eqeq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑌 = 𝑦 ↔ 𝑌 = 𝑌 ) ) | |
| 49 | 47 48 | imbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) |
| 50 | 46 49 | ralprg | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) |
| 51 | 43 50 | anbi12d | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) ) |
| 52 | 51 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) ) |
| 54 | 1 | fveq1i | ⊢ ( 𝐹 ‘ 𝑋 ) = ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑋 ) |
| 55 | 3simpb | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ) ) | |
| 56 | 55 | anim1i | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
| 57 | df-3an | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ↔ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) | |
| 58 | 56 57 | sylibr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ) |
| 59 | fvpr1g | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑋 ) = 𝑍 ) | |
| 60 | 58 59 | syl | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑋 ) = 𝑍 ) |
| 61 | 54 60 | eqtrid | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |
| 62 | 1 | fveq1i | ⊢ ( 𝐹 ‘ 𝑌 ) = ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑌 ) |
| 63 | 3simpc | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) | |
| 64 | 63 | anim1i | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
| 65 | df-3an | ⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ↔ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) | |
| 66 | 64 65 | sylibr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ) |
| 67 | fvpr2g | ⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑌 ) = 𝑍 ) | |
| 68 | 66 67 | syl | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑌 ) = 𝑍 ) |
| 69 | 62 68 | eqtr2id | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑍 = ( 𝐹 ‘ 𝑌 ) ) |
| 70 | 61 69 | eqtrd | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 71 | idd | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 = 𝑌 → 𝑋 = 𝑌 ) ) | |
| 72 | 70 71 | embantd | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 73 | 72 | adantld | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) → 𝑋 = 𝑌 ) ) |
| 74 | 73 | adantrd | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) → 𝑋 = 𝑌 ) ) |
| 75 | 53 74 | sylbid | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) → 𝑋 = 𝑌 ) ) |
| 76 | 34 75 | sylbid | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → 𝑋 = 𝑌 ) ) |
| 77 | 76 | adantld | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → 𝑋 = 𝑌 ) ) |
| 78 | 23 77 | biimtrid | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 : { 𝑋 , 𝑌 } –1-1→ { 𝑍 , 𝑍 } → 𝑋 = 𝑌 ) ) |
| 79 | 22 78 | biimtrrid | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ Fun ◡ 𝐹 ) → 𝑋 = 𝑌 ) ) |
| 80 | 21 79 | mpand | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( Fun ◡ 𝐹 → 𝑋 = 𝑌 ) ) |
| 81 | 16 80 | mtod | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ¬ Fun ◡ 𝐹 ) |
| 82 | 14 81 | jca | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( Fun 𝐹 ∧ ¬ Fun ◡ 𝐹 ) ) |