This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval . (Contributed by NM, 10-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ntr | ⊢ int = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ ( 𝑗 ∩ 𝒫 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnt | ⊢ int | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑗 |
| 5 | 4 | cuni | ⊢ ∪ 𝑗 |
| 6 | 5 | cpw | ⊢ 𝒫 ∪ 𝑗 |
| 7 | 3 | cv | ⊢ 𝑥 |
| 8 | 7 | cpw | ⊢ 𝒫 𝑥 |
| 9 | 4 8 | cin | ⊢ ( 𝑗 ∩ 𝒫 𝑥 ) |
| 10 | 9 | cuni | ⊢ ∪ ( 𝑗 ∩ 𝒫 𝑥 ) |
| 11 | 3 6 10 | cmpt | ⊢ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ ( 𝑗 ∩ 𝒫 𝑥 ) ) |
| 12 | 1 2 11 | cmpt | ⊢ ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ ( 𝑗 ∩ 𝒫 𝑥 ) ) ) |
| 13 | 0 12 | wceq | ⊢ int = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ ( 𝑗 ∩ 𝒫 𝑥 ) ) ) |