This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ntrcls0 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simpl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝐽 ∈ Top ) | |
| 3 | 1 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 4 | 1 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 5 | 1 | ntrss | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ∧ 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 6 | 2 3 4 5 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 8 | sseq2 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∅ ) ) | |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∅ ) ) |
| 10 | 7 9 | mpbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∅ ) |
| 11 | ss0 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∅ → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ∅ ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) |