This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | ntrcls0 | |- ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( int ` J ) ` S ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | simpl | |- ( ( J e. Top /\ S C_ X ) -> J e. Top ) |
|
| 3 | 1 | clsss3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 4 | 1 | sscls | |- ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 5 | 1 | ntrss | |- ( ( J e. Top /\ ( ( cls ` J ) ` S ) C_ X /\ S C_ ( ( cls ` J ) ` S ) ) -> ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) ) |
| 6 | 2 3 4 5 | syl3anc | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) ) |
| 7 | 6 | 3adant3 | |- ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) ) |
| 8 | sseq2 | |- ( ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) -> ( ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) <-> ( ( int ` J ) ` S ) C_ (/) ) ) |
|
| 9 | 8 | 3ad2ant3 | |- ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) <-> ( ( int ` J ) ` S ) C_ (/) ) ) |
| 10 | 7 9 | mpbid | |- ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( int ` J ) ` S ) C_ (/) ) |
| 11 | ss0 | |- ( ( ( int ` J ) ` S ) C_ (/) -> ( ( int ` J ) ` S ) = (/) ) |
|
| 12 | 10 11 | syl | |- ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( int ` J ) ` S ) = (/) ) |