This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In the Separation Scheme zfauscl , we require that y not occur in ph (which can be generalized to "not be free in"). Here we show special cases of A and ph that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006) (Proof shortened by BJ, 18-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | notzfaus.1 | ⊢ 𝐴 = { ∅ } | |
| notzfaus.2 | ⊢ ( 𝜑 ↔ ¬ 𝑥 ∈ 𝑦 ) | ||
| Assertion | notzfaus | ⊢ ¬ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notzfaus.1 | ⊢ 𝐴 = { ∅ } | |
| 2 | notzfaus.2 | ⊢ ( 𝜑 ↔ ¬ 𝑥 ∈ 𝑦 ) | |
| 3 | 0ex | ⊢ ∅ ∈ V | |
| 4 | 3 | snnz | ⊢ { ∅ } ≠ ∅ |
| 5 | 1 4 | eqnetri | ⊢ 𝐴 ≠ ∅ |
| 6 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 7 | 5 6 | mpbi | ⊢ ∃ 𝑥 𝑥 ∈ 𝐴 |
| 8 | pm5.19 | ⊢ ¬ ( 𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑦 ) | |
| 9 | ibar | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 10 | 9 2 | bitr3di | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ¬ 𝑥 ∈ 𝑦 ) ) |
| 11 | 10 | bibi2d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 12 | 8 11 | mtbiri | ⊢ ( 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 13 | 7 12 | eximii | ⊢ ∃ 𝑥 ¬ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 14 | exnal | ⊢ ( ∃ 𝑥 ¬ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 15 | 13 14 | mpbi | ⊢ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 16 | 15 | nex | ⊢ ¬ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |