This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In the Separation Scheme zfauscl , we require that y not occur in ph (which can be generalized to "not be free in"). Here we show special cases of A and ph that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006) (Proof shortened by BJ, 18-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | notzfaus.1 | |- A = { (/) } |
|
| notzfaus.2 | |- ( ph <-> -. x e. y ) |
||
| Assertion | notzfaus | |- -. E. y A. x ( x e. y <-> ( x e. A /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notzfaus.1 | |- A = { (/) } |
|
| 2 | notzfaus.2 | |- ( ph <-> -. x e. y ) |
|
| 3 | 0ex | |- (/) e. _V |
|
| 4 | 3 | snnz | |- { (/) } =/= (/) |
| 5 | 1 4 | eqnetri | |- A =/= (/) |
| 6 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 7 | 5 6 | mpbi | |- E. x x e. A |
| 8 | pm5.19 | |- -. ( x e. y <-> -. x e. y ) |
|
| 9 | ibar | |- ( x e. A -> ( ph <-> ( x e. A /\ ph ) ) ) |
|
| 10 | 9 2 | bitr3di | |- ( x e. A -> ( ( x e. A /\ ph ) <-> -. x e. y ) ) |
| 11 | 10 | bibi2d | |- ( x e. A -> ( ( x e. y <-> ( x e. A /\ ph ) ) <-> ( x e. y <-> -. x e. y ) ) ) |
| 12 | 8 11 | mtbiri | |- ( x e. A -> -. ( x e. y <-> ( x e. A /\ ph ) ) ) |
| 13 | 7 12 | eximii | |- E. x -. ( x e. y <-> ( x e. A /\ ph ) ) |
| 14 | exnal | |- ( E. x -. ( x e. y <-> ( x e. A /\ ph ) ) <-> -. A. x ( x e. y <-> ( x e. A /\ ph ) ) ) |
|
| 15 | 13 14 | mpbi | |- -. A. x ( x e. y <-> ( x e. A /\ ph ) ) |
| 16 | 15 | nex | |- -. E. y A. x ( x e. y <-> ( x e. A /\ ph ) ) |