This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In the Separation Scheme zfauscl , we require that y not occur in ph (which can be generalized to "not be free in"). Here we show special cases of A and ph that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006) (Proof shortened by BJ, 18-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | notzfaus.1 | ||
| notzfaus.2 | |||
| Assertion | notzfaus |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notzfaus.1 | ||
| 2 | notzfaus.2 | ||
| 3 | 0ex | ||
| 4 | 3 | snnz | |
| 5 | 1 4 | eqnetri | |
| 6 | n0 | ||
| 7 | 5 6 | mpbi | |
| 8 | pm5.19 | ||
| 9 | ibar | ||
| 10 | 9 2 | bitr3di | |
| 11 | 10 | bibi2d | |
| 12 | 8 11 | mtbiri | |
| 13 | 7 12 | eximii | |
| 14 | exnal | ||
| 15 | 13 14 | mpbi | |
| 16 | 15 | nex |