This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Class abstractions with difference, union, and intersection of two classes
notabw
Metamath Proof Explorer
Description: A class abstraction defined by a negation. Version of notab using
implicit substitution, which does not require ax-10 , ax-12 .
(Contributed by GG , 15-Oct-2024)
Ref
Expression
Hypothesis
notabw.1
⊢ x = y → φ ↔ ψ
Assertion
notabw
⊢ x | ¬ φ = V ∖ y | ψ
Proof
Step
Hyp
Ref
Expression
1
notabw.1
⊢ x = y → φ ↔ ψ
2
vex
⊢ x ∈ V
3
2
biantrur
⊢ ¬ x ∈ y | ψ ↔ x ∈ V ∧ ¬ x ∈ y | ψ
4
df-clab
⊢ x ∈ y | ψ ↔ x y ψ
5
1
bicomd
⊢ x = y → ψ ↔ φ
6
5
equcoms
⊢ y = x → ψ ↔ φ
7
6
sbievw
⊢ x y ψ ↔ φ
8
4 7
bitri
⊢ x ∈ y | ψ ↔ φ
9
3 8
xchnxbi
⊢ ¬ φ ↔ x ∈ V ∧ ¬ x ∈ y | ψ
10
9
abbii
⊢ x | ¬ φ = x | x ∈ V ∧ ¬ x ∈ y | ψ
11
df-dif
⊢ V ∖ y | ψ = x | x ∈ V ∧ ¬ x ∈ y | ψ
12
10 11
eqtr4i
⊢ x | ¬ φ = V ∖ y | ψ