This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 3-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | norm3adift.1 | ⊢ 𝐶 ∈ ℋ | |
| Assertion | norm3adifi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3adift.1 | ⊢ 𝐶 ∈ ℋ | |
| 2 | fvoveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) ) | |
| 3 | 2 | fvoveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( abs ‘ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) = ( abs ‘ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ) |
| 4 | fvoveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) ) | |
| 5 | 3 4 | breq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( abs ‘ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↔ ( abs ‘ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) ) ) |
| 6 | fvoveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) = ( normℎ ‘ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐶 ) ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) = ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) − ( normℎ ‘ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐶 ) ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( abs ‘ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) = ( abs ‘ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) − ( normℎ ‘ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐶 ) ) ) ) ) |
| 9 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 11 | 8 10 | breq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( abs ‘ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) ↔ ( abs ‘ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) − ( normℎ ‘ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 12 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 13 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 14 | 12 13 1 | norm3adifii | ⊢ ( abs ‘ ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐶 ) ) − ( normℎ ‘ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 15 | 5 11 14 | dedth2h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |