This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 3-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | norm3adift.1 | |- C e. ~H |
|
| Assertion | norm3adifi | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3adift.1 | |- C e. ~H |
|
| 2 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) ) |
|
| 3 | 2 | fvoveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) = ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) ) |
| 4 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) |
|
| 5 | 3 4 | breq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) <-> ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) ) |
| 6 | fvoveq1 | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( B -h C ) ) = ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) |
|
| 7 | 6 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) |
| 8 | 7 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) = ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) ) |
| 9 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
|
| 10 | 9 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 11 | 8 10 | breq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) <-> ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) ) |
| 12 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 13 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 14 | 12 13 1 | norm3adifii | |- ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
| 15 | 5 11 14 | dedth2h | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) ) |