This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any substitution in an always false formula is false. (Contributed by Steven Nguyen, 3-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nsb | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ [ 𝑡 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
| 2 | 1 | biimpi | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ ∃ 𝑥 𝜑 ) |
| 3 | spsbe | ⊢ ( [ 𝑡 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 ) | |
| 4 | 2 3 | nsyl | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ [ 𝑡 / 𝑥 ] 𝜑 ) |