This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnoddn2prmb | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → 𝑁 ∈ ℙ ) | |
| 2 | oddn2prm | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ 𝑁 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) ) |
| 4 | simpl | ⊢ ( ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℙ ) | |
| 5 | z2even | ⊢ 2 ∥ 2 | |
| 6 | breq2 | ⊢ ( 𝑁 = 2 → ( 2 ∥ 𝑁 ↔ 2 ∥ 2 ) ) | |
| 7 | 5 6 | mpbiri | ⊢ ( 𝑁 = 2 → 2 ∥ 𝑁 ) |
| 8 | 7 | a1i | ⊢ ( 𝑁 ∈ ℙ → ( 𝑁 = 2 → 2 ∥ 𝑁 ) ) |
| 9 | 8 | con3dimp | ⊢ ( ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) → ¬ 𝑁 = 2 ) |
| 10 | 9 | neqned | ⊢ ( ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ≠ 2 ) |
| 11 | nelsn | ⊢ ( 𝑁 ≠ 2 → ¬ 𝑁 ∈ { 2 } ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) → ¬ 𝑁 ∈ { 2 } ) |
| 13 | 4 12 | eldifd | ⊢ ( ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ( ℙ ∖ { 2 } ) ) |
| 14 | 3 13 | impbii | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) ) |