This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnoddn2prmb | |- ( N e. ( Prime \ { 2 } ) <-> ( N e. Prime /\ -. 2 || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | |- ( N e. ( Prime \ { 2 } ) -> N e. Prime ) |
|
| 2 | oddn2prm | |- ( N e. ( Prime \ { 2 } ) -> -. 2 || N ) |
|
| 3 | 1 2 | jca | |- ( N e. ( Prime \ { 2 } ) -> ( N e. Prime /\ -. 2 || N ) ) |
| 4 | simpl | |- ( ( N e. Prime /\ -. 2 || N ) -> N e. Prime ) |
|
| 5 | z2even | |- 2 || 2 |
|
| 6 | breq2 | |- ( N = 2 -> ( 2 || N <-> 2 || 2 ) ) |
|
| 7 | 5 6 | mpbiri | |- ( N = 2 -> 2 || N ) |
| 8 | 7 | a1i | |- ( N e. Prime -> ( N = 2 -> 2 || N ) ) |
| 9 | 8 | con3dimp | |- ( ( N e. Prime /\ -. 2 || N ) -> -. N = 2 ) |
| 10 | 9 | neqned | |- ( ( N e. Prime /\ -. 2 || N ) -> N =/= 2 ) |
| 11 | nelsn | |- ( N =/= 2 -> -. N e. { 2 } ) |
|
| 12 | 10 11 | syl | |- ( ( N e. Prime /\ -. 2 || N ) -> -. N e. { 2 } ) |
| 13 | 4 12 | eldifd | |- ( ( N e. Prime /\ -. 2 || N ) -> N e. ( Prime \ { 2 } ) ) |
| 14 | 3 13 | impbii | |- ( N e. ( Prime \ { 2 } ) <-> ( N e. Prime /\ -. 2 || N ) ) |