This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnoddn2prmb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | ||
| 2 | oddn2prm | ||
| 3 | 1 2 | jca | |
| 4 | simpl | ||
| 5 | z2even | ||
| 6 | breq2 | ||
| 7 | 5 6 | mpbiri | |
| 8 | 7 | a1i | |
| 9 | 8 | con3dimp | |
| 10 | 9 | neqned | |
| 11 | nelsn | ||
| 12 | 10 11 | syl | |
| 13 | 4 12 | eldifd | |
| 14 | 3 13 | impbii |