This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnncan1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) − ( 𝐴 − 𝐶 ) ) = ( 𝐶 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
| 3 | sub32 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 − 𝐶 ) ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) − ( 𝐴 − 𝐶 ) ) = ( ( 𝐴 − ( 𝐴 − 𝐶 ) ) − 𝐵 ) ) | |
| 4 | 2 3 | syld3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) − ( 𝐴 − 𝐶 ) ) = ( ( 𝐴 − ( 𝐴 − 𝐶 ) ) − 𝐵 ) ) |
| 5 | nncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐴 − 𝐶 ) ) = 𝐶 ) | |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐴 − 𝐶 ) ) = 𝐶 ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − ( 𝐴 − 𝐶 ) ) − 𝐵 ) = ( 𝐶 − 𝐵 ) ) |
| 8 | 4 7 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) − ( 𝐴 − 𝐶 ) ) = ( 𝐶 − 𝐵 ) ) |