This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn2ge | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 3 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 5 | leid | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ 𝐵 ) | |
| 6 | 5 | anim1ci | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) |
| 7 | 3 6 | sylan | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) |
| 8 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵 ) ) | |
| 9 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐵 ) ) | |
| 10 | 8 9 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) ) |
| 11 | 10 | rspcev | ⊢ ( ( 𝐵 ∈ ℕ ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
| 12 | 7 11 | syldan | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
| 13 | 12 | adantll | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
| 14 | leid | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ 𝐴 ) | |
| 15 | 14 | anim1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴 ) ) |
| 16 | 1 15 | sylan | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴 ) ) |
| 17 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴 ) ) | |
| 18 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐴 ) ) | |
| 19 | 17 18 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ↔ ( 𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴 ) ) ) |
| 20 | 19 | rspcev | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴 ) ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
| 21 | 16 20 | syldan | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
| 22 | 21 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝐵 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |
| 23 | 2 4 13 22 | lecasei | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ∃ 𝑥 ∈ ℕ ( 𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥 ) ) |