This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of Quine p. 124. See nn0opthi . (Contributed by NM, 22-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0opth2 | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) → ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) → ( 𝐴 + 𝐵 ) = ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + 𝐵 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) ) |
| 3 | 2 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) + 𝐵 ) ) |
| 4 | 3 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) → ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ) ) |
| 5 | eqeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) → ( 𝐴 = 𝐶 ↔ if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = 𝐶 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 7 | 4 6 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) → ( ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ↔ ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 8 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) → ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + 𝐵 ) = ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) = ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) ) |
| 10 | id | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) → 𝐵 = if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) | |
| 11 | 9 10 | oveq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) → ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ) |
| 12 | 11 | eqeq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) → ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ) ) |
| 13 | eqeq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) → ( 𝐵 = 𝐷 ↔ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = 𝐷 ) ) | |
| 14 | 13 | anbi2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) → ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = 𝐶 ∧ 𝐵 = 𝐷 ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = 𝐶 ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = 𝐷 ) ) ) |
| 15 | 12 14 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) → ( ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = 𝐶 ∧ 𝐵 = 𝐷 ) ) ↔ ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = 𝐶 ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = 𝐷 ) ) ) ) |
| 16 | oveq1 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) → ( 𝐶 + 𝐷 ) = ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + 𝐷 ) ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) → ( ( 𝐶 + 𝐷 ) ↑ 2 ) = ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + 𝐷 ) ↑ 2 ) ) |
| 18 | 17 | oveq1d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) → ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) = ( ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + 𝐷 ) ↑ 2 ) + 𝐷 ) ) |
| 19 | 18 | eqeq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) → ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + 𝐷 ) ↑ 2 ) + 𝐷 ) ) ) |
| 20 | eqeq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) → ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = 𝐶 ↔ if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) ) ) | |
| 21 | 20 | anbi1d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) → ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = 𝐶 ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = 𝐷 ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = 𝐷 ) ) ) |
| 22 | 19 21 | bibi12d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) → ( ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = 𝐶 ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = 𝐷 ) ) ↔ ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = 𝐷 ) ) ) ) |
| 23 | oveq2 | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) → ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + 𝐷 ) = ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ) | |
| 24 | 23 | oveq1d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) → ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + 𝐷 ) ↑ 2 ) = ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ↑ 2 ) ) |
| 25 | id | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) → 𝐷 = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) | |
| 26 | 24 25 | oveq12d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) → ( ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + 𝐷 ) ↑ 2 ) + 𝐷 ) = ( ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ↑ 2 ) + if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ) |
| 27 | 26 | eqeq2d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) → ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ↑ 2 ) + if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ) ) |
| 28 | eqeq2 | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) → ( if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = 𝐷 ↔ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ) | |
| 29 | 28 | anbi2d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) → ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = 𝐷 ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ) ) |
| 30 | 27 29 | bibi12d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) → ( ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = 𝐷 ) ) ↔ ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ↑ 2 ) + if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ) ) ) |
| 31 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 32 | 31 | elimel | ⊢ if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) ∈ ℕ0 |
| 33 | 31 | elimel | ⊢ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ∈ ℕ0 |
| 34 | 31 | elimel | ⊢ if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) ∈ ℕ0 |
| 35 | 31 | elimel | ⊢ if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ∈ ℕ0 |
| 36 | 32 33 34 35 | nn0opth2i | ⊢ ( ( ( ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) ↑ 2 ) + if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) ) = ( ( ( if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) + if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ↑ 2 ) + if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ↔ ( if ( 𝐴 ∈ ℕ0 , 𝐴 , 0 ) = if ( 𝐶 ∈ ℕ0 , 𝐶 , 0 ) ∧ if ( 𝐵 ∈ ℕ0 , 𝐵 , 0 ) = if ( 𝐷 ∈ ℕ0 , 𝐷 , 0 ) ) ) |
| 37 | 7 15 22 30 36 | dedth4h | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) → ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |