This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a normed group, which is a group accompanied by a norm. (Contributed by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ngpi.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| ngpi.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| ngpi.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | ngpi | ⊢ ( 𝑊 ∈ NrmGrp → ( 𝑊 ∈ Grp ∧ 𝑁 : 𝑉 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑉 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ngpi.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 3 | ngpi.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | ngpi.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 5 | ngpgrp | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ Grp ) | |
| 6 | 1 2 | nmf | ⊢ ( 𝑊 ∈ NrmGrp → 𝑁 : 𝑉 ⟶ ℝ ) |
| 7 | 1 2 4 | nmeq0 | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
| 8 | 1 2 3 | nmmtri | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 10 | 9 | ralrimiva | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 11 | 7 10 | jca | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝑊 ∈ NrmGrp → ∀ 𝑥 ∈ 𝑉 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 13 | 5 6 12 | 3jca | ⊢ ( 𝑊 ∈ NrmGrp → ( 𝑊 ∈ Grp ∧ 𝑁 : 𝑉 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑉 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |