This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set in the supremum of the operator norm definition df-nmop is a set of reals. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopsetretALT | |- ( T : ~H --> ~H -> { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } C_ RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | |- ( ( T : ~H --> ~H /\ y e. ~H ) -> ( T ` y ) e. ~H ) |
|
| 2 | normcl | |- ( ( T ` y ) e. ~H -> ( normh ` ( T ` y ) ) e. RR ) |
|
| 3 | 1 2 | syl | |- ( ( T : ~H --> ~H /\ y e. ~H ) -> ( normh ` ( T ` y ) ) e. RR ) |
| 4 | eleq1 | |- ( x = ( normh ` ( T ` y ) ) -> ( x e. RR <-> ( normh ` ( T ` y ) ) e. RR ) ) |
|
| 5 | 3 4 | imbitrrid | |- ( x = ( normh ` ( T ` y ) ) -> ( ( T : ~H --> ~H /\ y e. ~H ) -> x e. RR ) ) |
| 6 | 5 | impcom | |- ( ( ( T : ~H --> ~H /\ y e. ~H ) /\ x = ( normh ` ( T ` y ) ) ) -> x e. RR ) |
| 7 | 6 | adantrl | |- ( ( ( T : ~H --> ~H /\ y e. ~H ) /\ ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) ) -> x e. RR ) |
| 8 | 7 | exp31 | |- ( T : ~H --> ~H -> ( y e. ~H -> ( ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) -> x e. RR ) ) ) |
| 9 | 8 | rexlimdv | |- ( T : ~H --> ~H -> ( E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) -> x e. RR ) ) |
| 10 | 9 | abssdv | |- ( T : ~H --> ~H -> { x | E. y e. ~H ( ( normh ` y ) <_ 1 /\ x = ( normh ` ( T ` y ) ) ) } C_ RR ) |