This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopgt0 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 0 < ( normop ‘ 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopxr | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) ∈ ℝ* ) | |
| 2 | nmopge0 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ 𝑇 ) ) | |
| 3 | 0xr | ⊢ 0 ∈ ℝ* | |
| 4 | xrleltne | ⊢ ( ( 0 ∈ ℝ* ∧ ( normop ‘ 𝑇 ) ∈ ℝ* ∧ 0 ≤ ( normop ‘ 𝑇 ) ) → ( 0 < ( normop ‘ 𝑇 ) ↔ ( normop ‘ 𝑇 ) ≠ 0 ) ) | |
| 5 | 3 4 | mp3an1 | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ* ∧ 0 ≤ ( normop ‘ 𝑇 ) ) → ( 0 < ( normop ‘ 𝑇 ) ↔ ( normop ‘ 𝑇 ) ≠ 0 ) ) |
| 6 | 1 2 5 | syl2anc | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 0 < ( normop ‘ 𝑇 ) ↔ ( normop ‘ 𝑇 ) ≠ 0 ) ) |
| 7 | 6 | bicomd | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 0 < ( normop ‘ 𝑇 ) ) ) |