This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic continuity property of a continuous Hilbert space operator. (Contributed by NM, 2-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnopc | ⊢ ( ( 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcnop | ⊢ ( 𝑇 ∈ ContOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑧 ∈ ℋ ∀ 𝑤 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ) ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝑇 ∈ ContOp → ∀ 𝑧 ∈ ℋ ∀ 𝑤 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ) ) |
| 3 | oveq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑦 −ℎ 𝑧 ) = ( 𝑦 −ℎ 𝐴 ) ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑧 = 𝐴 → ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) = ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) ) |
| 5 | 4 | breq1d | ⊢ ( 𝑧 = 𝐴 → ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 ↔ ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 ) ) |
| 6 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝐴 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑧 = 𝐴 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 9 | 8 | breq1d | ⊢ ( 𝑧 = 𝐴 → ( ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ↔ ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ) ) |
| 10 | 5 9 | imbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ) ↔ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ) ) ) |
| 11 | 10 | rexralbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ) ↔ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ) ) ) |
| 12 | breq2 | ⊢ ( 𝑤 = 𝐵 → ( ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ↔ ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) | |
| 13 | 12 | imbi2d | ⊢ ( 𝑤 = 𝐵 → ( ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ) ↔ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) ) |
| 14 | 13 | rexralbidv | ⊢ ( 𝑤 = 𝐵 → ( ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝑤 ) ↔ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) ) |
| 15 | 11 14 | rspc2v | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ ℋ ∀ 𝑤 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝑧 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝑧 ) ) ) < 𝑤 ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) ) |
| 16 | 2 15 | syl5com | ⊢ ( 𝑇 ∈ ContOp → ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) ) |
| 17 | 16 | 3impib | ⊢ ( ( 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℋ ( ( normℎ ‘ ( 𝑦 −ℎ 𝐴 ) ) < 𝑥 → ( normℎ ‘ ( ( 𝑇 ‘ 𝑦 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) < 𝐵 ) ) |