This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopgt0 | |- ( T : ~H --> ~H -> ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopxr | |- ( T : ~H --> ~H -> ( normop ` T ) e. RR* ) |
|
| 2 | nmopge0 | |- ( T : ~H --> ~H -> 0 <_ ( normop ` T ) ) |
|
| 3 | 0xr | |- 0 e. RR* |
|
| 4 | xrleltne | |- ( ( 0 e. RR* /\ ( normop ` T ) e. RR* /\ 0 <_ ( normop ` T ) ) -> ( 0 < ( normop ` T ) <-> ( normop ` T ) =/= 0 ) ) |
|
| 5 | 3 4 | mp3an1 | |- ( ( ( normop ` T ) e. RR* /\ 0 <_ ( normop ` T ) ) -> ( 0 < ( normop ` T ) <-> ( normop ` T ) =/= 0 ) ) |
| 6 | 1 2 5 | syl2anc | |- ( T : ~H --> ~H -> ( 0 < ( normop ` T ) <-> ( normop ` T ) =/= 0 ) ) |
| 7 | 6 | bicomd | |- ( T : ~H --> ~H -> ( ( normop ` T ) =/= 0 <-> 0 < ( normop ` T ) ) ) |