This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | |- N = ( S normOp T ) |
|
| nmofval.2 | |- V = ( Base ` S ) |
||
| nmofval.3 | |- L = ( norm ` S ) |
||
| nmofval.4 | |- M = ( norm ` T ) |
||
| nmolb2d.z | |- .0. = ( 0g ` S ) |
||
| nmolb2d.1 | |- ( ph -> S e. NrmGrp ) |
||
| nmolb2d.2 | |- ( ph -> T e. NrmGrp ) |
||
| nmolb2d.3 | |- ( ph -> F e. ( S GrpHom T ) ) |
||
| nmolb2d.4 | |- ( ph -> A e. RR ) |
||
| nmolb2d.5 | |- ( ph -> 0 <_ A ) |
||
| nmolb2d.6 | |- ( ( ph /\ ( x e. V /\ x =/= .0. ) ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
||
| Assertion | nmolb2d | |- ( ph -> ( N ` F ) <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | |- N = ( S normOp T ) |
|
| 2 | nmofval.2 | |- V = ( Base ` S ) |
|
| 3 | nmofval.3 | |- L = ( norm ` S ) |
|
| 4 | nmofval.4 | |- M = ( norm ` T ) |
|
| 5 | nmolb2d.z | |- .0. = ( 0g ` S ) |
|
| 6 | nmolb2d.1 | |- ( ph -> S e. NrmGrp ) |
|
| 7 | nmolb2d.2 | |- ( ph -> T e. NrmGrp ) |
|
| 8 | nmolb2d.3 | |- ( ph -> F e. ( S GrpHom T ) ) |
|
| 9 | nmolb2d.4 | |- ( ph -> A e. RR ) |
|
| 10 | nmolb2d.5 | |- ( ph -> 0 <_ A ) |
|
| 11 | nmolb2d.6 | |- ( ( ph /\ ( x e. V /\ x =/= .0. ) ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
|
| 12 | 2fveq3 | |- ( x = .0. -> ( M ` ( F ` x ) ) = ( M ` ( F ` .0. ) ) ) |
|
| 13 | fveq2 | |- ( x = .0. -> ( L ` x ) = ( L ` .0. ) ) |
|
| 14 | 13 | oveq2d | |- ( x = .0. -> ( A x. ( L ` x ) ) = ( A x. ( L ` .0. ) ) ) |
| 15 | 12 14 | breq12d | |- ( x = .0. -> ( ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) <-> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) ) |
| 16 | 11 | anassrs | |- ( ( ( ph /\ x e. V ) /\ x =/= .0. ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
| 17 | 0le0 | |- 0 <_ 0 |
|
| 18 | 9 | recnd | |- ( ph -> A e. CC ) |
| 19 | 18 | mul01d | |- ( ph -> ( A x. 0 ) = 0 ) |
| 20 | 17 19 | breqtrrid | |- ( ph -> 0 <_ ( A x. 0 ) ) |
| 21 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 22 | 5 21 | ghmid | |- ( F e. ( S GrpHom T ) -> ( F ` .0. ) = ( 0g ` T ) ) |
| 23 | 8 22 | syl | |- ( ph -> ( F ` .0. ) = ( 0g ` T ) ) |
| 24 | 23 | fveq2d | |- ( ph -> ( M ` ( F ` .0. ) ) = ( M ` ( 0g ` T ) ) ) |
| 25 | 4 21 | nm0 | |- ( T e. NrmGrp -> ( M ` ( 0g ` T ) ) = 0 ) |
| 26 | 7 25 | syl | |- ( ph -> ( M ` ( 0g ` T ) ) = 0 ) |
| 27 | 24 26 | eqtrd | |- ( ph -> ( M ` ( F ` .0. ) ) = 0 ) |
| 28 | 3 5 | nm0 | |- ( S e. NrmGrp -> ( L ` .0. ) = 0 ) |
| 29 | 6 28 | syl | |- ( ph -> ( L ` .0. ) = 0 ) |
| 30 | 29 | oveq2d | |- ( ph -> ( A x. ( L ` .0. ) ) = ( A x. 0 ) ) |
| 31 | 20 27 30 | 3brtr4d | |- ( ph -> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) |
| 32 | 31 | adantr | |- ( ( ph /\ x e. V ) -> ( M ` ( F ` .0. ) ) <_ ( A x. ( L ` .0. ) ) ) |
| 33 | 15 16 32 | pm2.61ne | |- ( ( ph /\ x e. V ) -> ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
| 34 | 33 | ralrimiva | |- ( ph -> A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) ) |
| 35 | 1 2 3 4 | nmolb | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ A e. RR /\ 0 <_ A ) -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) -> ( N ` F ) <_ A ) ) |
| 36 | 6 7 8 9 10 35 | syl311anc | |- ( ph -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( A x. ( L ` x ) ) -> ( N ` F ) <_ A ) ) |
| 37 | 34 36 | mpd | |- ( ph -> ( N ` F ) <_ A ) |