This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmofval.1 | |- N = ( S normOp T ) |
|
| Assertion | nmof | |- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> N : ( S GrpHom T ) --> RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | |- N = ( S normOp T ) |
|
| 2 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 3 | eqid | |- ( norm ` S ) = ( norm ` S ) |
|
| 4 | eqid | |- ( norm ` T ) = ( norm ` T ) |
|
| 5 | 1 2 3 4 | nmofval | |- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> N = ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } , RR* , < ) ) ) |
| 6 | ssrab2 | |- { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } C_ ( 0 [,) +oo ) |
|
| 7 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 8 | 6 7 | sstri | |- { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } C_ RR* |
| 9 | infxrcl | |- ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } C_ RR* -> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } , RR* , < ) e. RR* ) |
|
| 10 | 8 9 | mp1i | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ f e. ( S GrpHom T ) ) -> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` S ) ( ( norm ` T ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) } , RR* , < ) e. RR* ) |
| 11 | 5 10 | fmpt3d | |- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> N : ( S GrpHom T ) --> RR* ) |