This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nmfn | ⊢ normfn = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnmf | ⊢ normfn | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | cc | ⊢ ℂ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | chba | ⊢ ℋ | |
| 5 | 2 4 3 | co | ⊢ ( ℂ ↑m ℋ ) |
| 6 | vx | ⊢ 𝑥 | |
| 7 | vz | ⊢ 𝑧 | |
| 8 | cno | ⊢ normℎ | |
| 9 | 7 | cv | ⊢ 𝑧 |
| 10 | 9 8 | cfv | ⊢ ( normℎ ‘ 𝑧 ) |
| 11 | cle | ⊢ ≤ | |
| 12 | c1 | ⊢ 1 | |
| 13 | 10 12 11 | wbr | ⊢ ( normℎ ‘ 𝑧 ) ≤ 1 |
| 14 | 6 | cv | ⊢ 𝑥 |
| 15 | cabs | ⊢ abs | |
| 16 | 1 | cv | ⊢ 𝑡 |
| 17 | 9 16 | cfv | ⊢ ( 𝑡 ‘ 𝑧 ) |
| 18 | 17 15 | cfv | ⊢ ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) |
| 19 | 14 18 | wceq | ⊢ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) |
| 20 | 13 19 | wa | ⊢ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
| 21 | 20 7 4 | wrex | ⊢ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
| 22 | 21 6 | cab | ⊢ { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } |
| 23 | cxr | ⊢ ℝ* | |
| 24 | clt | ⊢ < | |
| 25 | 22 23 24 | csup | ⊢ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) |
| 26 | 1 5 25 | cmpt | ⊢ ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 27 | 0 26 | wceq | ⊢ normfn = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |