This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmfnge0 | |- ( T : ~H --> CC -> 0 <_ ( normfn ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | ffvelcdm | |- ( ( T : ~H --> CC /\ 0h e. ~H ) -> ( T ` 0h ) e. CC ) |
|
| 3 | 1 2 | mpan2 | |- ( T : ~H --> CC -> ( T ` 0h ) e. CC ) |
| 4 | 3 | absge0d | |- ( T : ~H --> CC -> 0 <_ ( abs ` ( T ` 0h ) ) ) |
| 5 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 6 | 0le1 | |- 0 <_ 1 |
|
| 7 | 5 6 | eqbrtri | |- ( normh ` 0h ) <_ 1 |
| 8 | nmfnlb | |- ( ( T : ~H --> CC /\ 0h e. ~H /\ ( normh ` 0h ) <_ 1 ) -> ( abs ` ( T ` 0h ) ) <_ ( normfn ` T ) ) |
|
| 9 | 1 7 8 | mp3an23 | |- ( T : ~H --> CC -> ( abs ` ( T ` 0h ) ) <_ ( normfn ` T ) ) |
| 10 | 3 | abscld | |- ( T : ~H --> CC -> ( abs ` ( T ` 0h ) ) e. RR ) |
| 11 | 10 | rexrd | |- ( T : ~H --> CC -> ( abs ` ( T ` 0h ) ) e. RR* ) |
| 12 | nmfnxr | |- ( T : ~H --> CC -> ( normfn ` T ) e. RR* ) |
|
| 13 | 0xr | |- 0 e. RR* |
|
| 14 | xrletr | |- ( ( 0 e. RR* /\ ( abs ` ( T ` 0h ) ) e. RR* /\ ( normfn ` T ) e. RR* ) -> ( ( 0 <_ ( abs ` ( T ` 0h ) ) /\ ( abs ` ( T ` 0h ) ) <_ ( normfn ` T ) ) -> 0 <_ ( normfn ` T ) ) ) |
|
| 15 | 13 14 | mp3an1 | |- ( ( ( abs ` ( T ` 0h ) ) e. RR* /\ ( normfn ` T ) e. RR* ) -> ( ( 0 <_ ( abs ` ( T ` 0h ) ) /\ ( abs ` ( T ` 0h ) ) <_ ( normfn ` T ) ) -> 0 <_ ( normfn ` T ) ) ) |
| 16 | 11 12 15 | syl2anc | |- ( T : ~H --> CC -> ( ( 0 <_ ( abs ` ( T ` 0h ) ) /\ ( abs ` ( T ` 0h ) ) <_ ( normfn ` T ) ) -> 0 <_ ( normfn ` T ) ) ) |
| 17 | 4 9 16 | mp2and | |- ( T : ~H --> CC -> 0 <_ ( normfn ` T ) ) |