This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancel right addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngprcan.x | |- X = ( Base ` G ) |
|
| ngprcan.p | |- .+ = ( +g ` G ) |
||
| ngprcan.d | |- D = ( dist ` G ) |
||
| Assertion | ngprcan | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .+ C ) D ( B .+ C ) ) = ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngprcan.x | |- X = ( Base ` G ) |
|
| 2 | ngprcan.p | |- .+ = ( +g ` G ) |
|
| 3 | ngprcan.d | |- D = ( dist ` G ) |
|
| 4 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 5 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 6 | 1 2 5 | grppnpcan2 | |- ( ( G e. Grp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .+ C ) ( -g ` G ) ( B .+ C ) ) = ( A ( -g ` G ) B ) ) |
| 7 | 4 6 | sylan | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .+ C ) ( -g ` G ) ( B .+ C ) ) = ( A ( -g ` G ) B ) ) |
| 8 | 7 | fveq2d | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( norm ` G ) ` ( ( A .+ C ) ( -g ` G ) ( B .+ C ) ) ) = ( ( norm ` G ) ` ( A ( -g ` G ) B ) ) ) |
| 9 | simpl | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. NrmGrp ) |
|
| 10 | 4 | adantr | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. Grp ) |
| 11 | simpr1 | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 12 | simpr3 | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
|
| 13 | 1 2 | grpcl | |- ( ( G e. Grp /\ A e. X /\ C e. X ) -> ( A .+ C ) e. X ) |
| 14 | 10 11 12 13 | syl3anc | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A .+ C ) e. X ) |
| 15 | simpr2 | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 16 | 1 2 | grpcl | |- ( ( G e. Grp /\ B e. X /\ C e. X ) -> ( B .+ C ) e. X ) |
| 17 | 10 15 12 16 | syl3anc | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B .+ C ) e. X ) |
| 18 | eqid | |- ( norm ` G ) = ( norm ` G ) |
|
| 19 | 18 1 5 3 | ngpds | |- ( ( G e. NrmGrp /\ ( A .+ C ) e. X /\ ( B .+ C ) e. X ) -> ( ( A .+ C ) D ( B .+ C ) ) = ( ( norm ` G ) ` ( ( A .+ C ) ( -g ` G ) ( B .+ C ) ) ) ) |
| 20 | 9 14 17 19 | syl3anc | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .+ C ) D ( B .+ C ) ) = ( ( norm ` G ) ` ( ( A .+ C ) ( -g ` G ) ( B .+ C ) ) ) ) |
| 21 | 18 1 5 3 | ngpds | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( ( norm ` G ) ` ( A ( -g ` G ) B ) ) ) |
| 22 | 9 11 15 21 | syl3anc | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) = ( ( norm ` G ) ` ( A ( -g ` G ) B ) ) ) |
| 23 | 8 20 22 | 3eqtr4d | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .+ C ) D ( B .+ C ) ) = ( A D B ) ) |