This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an off-center vector in a ball in a normed module. (Contributed by NM, 27-Dec-2007) (Revised by AV, 14-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpocelbl.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| ngpocelbl.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| ngpocelbl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ngpocelbl.d | ⊢ 𝐷 = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) | ||
| Assertion | ngpocelbl | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑃 + 𝐴 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑁 ‘ 𝐴 ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpocelbl.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 2 | ngpocelbl.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | ngpocelbl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | ngpocelbl.d | ⊢ 𝐷 = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) | |
| 5 | nlmngp | ⊢ ( 𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp ) | |
| 6 | 2 4 | ngpmet | ⊢ ( 𝐺 ∈ NrmGrp → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 7 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( 𝐺 ∈ NrmMod → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 9 | 8 | anim1i | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ) |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ) |
| 11 | simp3l | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑃 ∈ 𝑋 ) | |
| 12 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 13 | 5 12 | syl | ⊢ ( 𝐺 ∈ NrmMod → 𝐺 ∈ Grp ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 15 | simp3 | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) | |
| 16 | 3anass | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) | |
| 17 | 14 15 16 | sylanbrc | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 18 | 2 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑃 + 𝐴 ) ∈ 𝑋 ) |
| 19 | 17 18 | syl | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑃 + 𝐴 ) ∈ 𝑋 ) |
| 20 | 11 19 | jca | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑃 ∈ 𝑋 ∧ ( 𝑃 + 𝐴 ) ∈ 𝑋 ) ) |
| 21 | 10 20 | jca | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ ( 𝑃 + 𝐴 ) ∈ 𝑋 ) ) ) |
| 22 | elbl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ ( 𝑃 + 𝐴 ) ∈ 𝑋 ) ) → ( ( 𝑃 + 𝐴 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑃 𝐷 ( 𝑃 + 𝐴 ) ) < 𝑅 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑃 + 𝐴 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑃 𝐷 ( 𝑃 + 𝐴 ) ) < 𝑅 ) ) |
| 24 | 4 | oveqi | ⊢ ( 𝑃 𝐷 ( 𝑃 + 𝐴 ) ) = ( 𝑃 ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) ( 𝑃 + 𝐴 ) ) |
| 25 | ovres | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ ( 𝑃 + 𝐴 ) ∈ 𝑋 ) → ( 𝑃 ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) ( 𝑃 + 𝐴 ) ) = ( 𝑃 ( dist ‘ 𝐺 ) ( 𝑃 + 𝐴 ) ) ) | |
| 26 | 24 25 | eqtrid | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ ( 𝑃 + 𝐴 ) ∈ 𝑋 ) → ( 𝑃 𝐷 ( 𝑃 + 𝐴 ) ) = ( 𝑃 ( dist ‘ 𝐺 ) ( 𝑃 + 𝐴 ) ) ) |
| 27 | 20 26 | syl | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑃 𝐷 ( 𝑃 + 𝐴 ) ) = ( 𝑃 ( dist ‘ 𝐺 ) ( 𝑃 + 𝐴 ) ) ) |
| 28 | 5 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐺 ∈ NrmGrp ) |
| 29 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 30 | eqid | ⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) | |
| 31 | 1 2 29 30 | ngpdsr | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑃 + 𝐴 ) ∈ 𝑋 ) → ( 𝑃 ( dist ‘ 𝐺 ) ( 𝑃 + 𝐴 ) ) = ( 𝑁 ‘ ( ( 𝑃 + 𝐴 ) ( -g ‘ 𝐺 ) 𝑃 ) ) ) |
| 32 | 28 11 19 31 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑃 ( dist ‘ 𝐺 ) ( 𝑃 + 𝐴 ) ) = ( 𝑁 ‘ ( ( 𝑃 + 𝐴 ) ( -g ‘ 𝐺 ) 𝑃 ) ) ) |
| 33 | nlmlmod | ⊢ ( 𝐺 ∈ NrmMod → 𝐺 ∈ LMod ) | |
| 34 | lmodabl | ⊢ ( 𝐺 ∈ LMod → 𝐺 ∈ Abel ) | |
| 35 | 33 34 | syl | ⊢ ( 𝐺 ∈ NrmMod → 𝐺 ∈ Abel ) |
| 36 | 35 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐺 ∈ Abel ) |
| 37 | 3anass | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ↔ ( 𝐺 ∈ Abel ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) ) | |
| 38 | 36 15 37 | sylanbrc | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐺 ∈ Abel ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 39 | 2 3 29 | ablpncan2 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑃 + 𝐴 ) ( -g ‘ 𝐺 ) 𝑃 ) = 𝐴 ) |
| 40 | 38 39 | syl | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑃 + 𝐴 ) ( -g ‘ 𝐺 ) 𝑃 ) = 𝐴 ) |
| 41 | 40 | fveq2d | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( ( 𝑃 + 𝐴 ) ( -g ‘ 𝐺 ) 𝑃 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 42 | 27 32 41 | 3eqtrd | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝑃 𝐷 ( 𝑃 + 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 43 | 42 | breq1d | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑃 𝐷 ( 𝑃 + 𝐴 ) ) < 𝑅 ↔ ( 𝑁 ‘ 𝐴 ) < 𝑅 ) ) |
| 44 | 23 43 | bitrd | ⊢ ( ( 𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑃 + 𝐴 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑁 ‘ 𝐴 ) < 𝑅 ) ) |