This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancel left addition inside a distance calculation. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngprcan.x | |- X = ( Base ` G ) |
|
| ngprcan.p | |- .+ = ( +g ` G ) |
||
| ngprcan.d | |- D = ( dist ` G ) |
||
| Assertion | ngplcan | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C .+ A ) D ( C .+ B ) ) = ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngprcan.x | |- X = ( Base ` G ) |
|
| 2 | ngprcan.p | |- .+ = ( +g ` G ) |
|
| 3 | ngprcan.d | |- D = ( dist ` G ) |
|
| 4 | simplr | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. Abel ) |
|
| 5 | simpr3 | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
|
| 6 | simpr1 | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 7 | 1 2 | ablcom | |- ( ( G e. Abel /\ C e. X /\ A e. X ) -> ( C .+ A ) = ( A .+ C ) ) |
| 8 | 4 5 6 7 | syl3anc | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( C .+ A ) = ( A .+ C ) ) |
| 9 | simpr2 | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 10 | 1 2 | ablcom | |- ( ( G e. Abel /\ C e. X /\ B e. X ) -> ( C .+ B ) = ( B .+ C ) ) |
| 11 | 4 5 9 10 | syl3anc | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( C .+ B ) = ( B .+ C ) ) |
| 12 | 8 11 | oveq12d | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C .+ A ) D ( C .+ B ) ) = ( ( A .+ C ) D ( B .+ C ) ) ) |
| 13 | 1 2 3 | ngprcan | |- ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .+ C ) D ( B .+ C ) ) = ( A D B ) ) |
| 14 | 13 | adantlr | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .+ C ) D ( B .+ C ) ) = ( A D B ) ) |
| 15 | 12 14 | eqtrd | |- ( ( ( G e. NrmGrp /\ G e. Abel ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( C .+ A ) D ( C .+ B ) ) = ( A D B ) ) |