This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpds2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| ngpds2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| ngpds2.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ngpds2.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| Assertion | ngpds2r | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( 𝐵 − 𝐴 ) 𝐷 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpds2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | ngpds2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | ngpds2.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | ngpds2.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 5 | ngpxms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp ) | |
| 6 | 1 4 | xmssym | ⊢ ( ( 𝐺 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) ) |
| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) ) |
| 8 | 1 2 3 4 | ngpds2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( ( 𝐵 − 𝐴 ) 𝐷 0 ) ) |
| 9 | 8 | 3com23 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( ( 𝐵 − 𝐴 ) 𝐷 0 ) ) |
| 10 | 7 9 | eqtrd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( 𝐵 − 𝐴 ) 𝐷 0 ) ) |