This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of nfun as of 14-May-2025. (Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 14-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfun.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| nfun.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | nfunOLD | ⊢ Ⅎ 𝑥 ( 𝐴 ∪ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfun.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | nfun.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | df-un | ⊢ ( 𝐴 ∪ 𝐵 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) } | |
| 4 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 5 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
| 6 | 4 5 | nfor | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) |
| 7 | 6 | nfab | ⊢ Ⅎ 𝑥 { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) } |
| 8 | 3 7 | nfcxfr | ⊢ Ⅎ 𝑥 ( 𝐴 ∪ 𝐵 ) |