This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfpo.r | ⊢ Ⅎ 𝑥 𝑅 | |
| nfpo.a | ⊢ Ⅎ 𝑥 𝐴 | ||
| Assertion | nfso | ⊢ Ⅎ 𝑥 𝑅 Or 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfpo.r | ⊢ Ⅎ 𝑥 𝑅 | |
| 2 | nfpo.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | df-so | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) ) | |
| 4 | 1 2 | nfpo | ⊢ Ⅎ 𝑥 𝑅 Po 𝐴 |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝑎 | |
| 6 | nfcv | ⊢ Ⅎ 𝑥 𝑏 | |
| 7 | 5 1 6 | nfbr | ⊢ Ⅎ 𝑥 𝑎 𝑅 𝑏 |
| 8 | nfv | ⊢ Ⅎ 𝑥 𝑎 = 𝑏 | |
| 9 | 6 1 5 | nfbr | ⊢ Ⅎ 𝑥 𝑏 𝑅 𝑎 |
| 10 | 7 8 9 | nf3or | ⊢ Ⅎ 𝑥 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) |
| 11 | 2 10 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) |
| 12 | 2 11 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) |
| 13 | 4 12 | nfan | ⊢ Ⅎ 𝑥 ( 𝑅 Po 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) |
| 14 | 3 13 | nfxfr | ⊢ Ⅎ 𝑥 𝑅 Or 𝐴 |