This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfpo.r | ⊢ Ⅎ 𝑥 𝑅 | |
| nfpo.a | ⊢ Ⅎ 𝑥 𝐴 | ||
| Assertion | nfpo | ⊢ Ⅎ 𝑥 𝑅 Po 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfpo.r | ⊢ Ⅎ 𝑥 𝑅 | |
| 2 | nfpo.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | df-po | ⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ 𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝑎 | |
| 5 | 4 1 4 | nfbr | ⊢ Ⅎ 𝑥 𝑎 𝑅 𝑎 |
| 6 | 5 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝑎 𝑅 𝑎 |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝑏 | |
| 8 | 4 1 7 | nfbr | ⊢ Ⅎ 𝑥 𝑎 𝑅 𝑏 |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝑐 | |
| 10 | 7 1 9 | nfbr | ⊢ Ⅎ 𝑥 𝑏 𝑅 𝑐 |
| 11 | 8 10 | nfan | ⊢ Ⅎ 𝑥 ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) |
| 12 | 4 1 9 | nfbr | ⊢ Ⅎ 𝑥 𝑎 𝑅 𝑐 |
| 13 | 11 12 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) |
| 14 | 6 13 | nfan | ⊢ Ⅎ 𝑥 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) |
| 15 | 2 14 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑐 ∈ 𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) |
| 16 | 2 15 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ 𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) |
| 17 | 2 16 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ 𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) |
| 18 | 3 17 | nfxfr | ⊢ Ⅎ 𝑥 𝑅 Po 𝐴 |