This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If x is not free in ph , ps , and ch , then it is not free in ( ph \/ ps \/ ch ) . (Contributed by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| nf.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| nf.3 | ⊢ Ⅎ 𝑥 𝜒 | ||
| Assertion | nf3or | ⊢ Ⅎ 𝑥 ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | nf.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | nf.3 | ⊢ Ⅎ 𝑥 𝜒 | |
| 4 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
| 5 | 1 2 | nfor | ⊢ Ⅎ 𝑥 ( 𝜑 ∨ 𝜓 ) |
| 6 | 5 3 | nfor | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) |
| 7 | 4 6 | nfxfr | ⊢ Ⅎ 𝑥 ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) |