This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfpo.r | |- F/_ x R |
|
| nfpo.a | |- F/_ x A |
||
| Assertion | nfpo | |- F/ x R Po A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfpo.r | |- F/_ x R |
|
| 2 | nfpo.a | |- F/_ x A |
|
| 3 | df-po | |- ( R Po A <-> A. a e. A A. b e. A A. c e. A ( -. a R a /\ ( ( a R b /\ b R c ) -> a R c ) ) ) |
|
| 4 | nfcv | |- F/_ x a |
|
| 5 | 4 1 4 | nfbr | |- F/ x a R a |
| 6 | 5 | nfn | |- F/ x -. a R a |
| 7 | nfcv | |- F/_ x b |
|
| 8 | 4 1 7 | nfbr | |- F/ x a R b |
| 9 | nfcv | |- F/_ x c |
|
| 10 | 7 1 9 | nfbr | |- F/ x b R c |
| 11 | 8 10 | nfan | |- F/ x ( a R b /\ b R c ) |
| 12 | 4 1 9 | nfbr | |- F/ x a R c |
| 13 | 11 12 | nfim | |- F/ x ( ( a R b /\ b R c ) -> a R c ) |
| 14 | 6 13 | nfan | |- F/ x ( -. a R a /\ ( ( a R b /\ b R c ) -> a R c ) ) |
| 15 | 2 14 | nfralw | |- F/ x A. c e. A ( -. a R a /\ ( ( a R b /\ b R c ) -> a R c ) ) |
| 16 | 2 15 | nfralw | |- F/ x A. b e. A A. c e. A ( -. a R a /\ ( ( a R b /\ b R c ) -> a R c ) ) |
| 17 | 2 16 | nfralw | |- F/ x A. a e. A A. b e. A A. c e. A ( -. a R a /\ ( ( a R b /\ b R c ) -> a R c ) ) |
| 18 | 3 17 | nfxfr | |- F/ x R Po A |