This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A setvar variable is not free from itself. This theorem is not true in a one-element domain, as illustrated by the use of dtruALT2 in its proof. (Contributed by Mario Carneiro, 8-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfnid | ⊢ ¬ Ⅎ 𝑥 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtruALT2 | ⊢ ¬ ∀ 𝑧 𝑧 = 𝑤 | |
| 2 | ax-ext | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) → 𝑧 = 𝑤 ) | |
| 3 | 2 | sps | ⊢ ( ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) → 𝑧 = 𝑤 ) |
| 4 | 3 | alimi | ⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) → ∀ 𝑧 𝑧 = 𝑤 ) |
| 5 | 1 4 | mto | ⊢ ¬ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) |
| 6 | df-nfc | ⊢ ( Ⅎ 𝑥 𝑥 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝑥 ) | |
| 7 | sbnf2 | ⊢ ( Ⅎ 𝑥 𝑦 ∈ 𝑥 ↔ ∀ 𝑧 ∀ 𝑤 ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ) ) | |
| 8 | elsb2 | ⊢ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) | |
| 9 | elsb2 | ⊢ ( [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑤 ) | |
| 10 | 8 9 | bibi12i | ⊢ ( ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 11 | 10 | 2albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 12 | 7 11 | bitri | ⊢ ( Ⅎ 𝑥 𝑦 ∈ 𝑥 ↔ ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 13 | 12 | albii | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 14 | alrot3 | ⊢ ( ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) | |
| 15 | 6 13 14 | 3bitri | ⊢ ( Ⅎ 𝑥 𝑥 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 16 | 5 15 | mtbir | ⊢ ¬ Ⅎ 𝑥 𝑥 |