This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfiota . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfiotadw when possible. (Contributed by NM, 18-Feb-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfiotad.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| nfiotad.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
| Assertion | nfiotad | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfiotad.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfiotad.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 3 | dfiota2 | ⊢ ( ℩ 𝑦 𝜓 ) = ∪ { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } | |
| 4 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 5 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 ) |
| 6 | nfeqf1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 = 𝑧 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 = 𝑧 ) |
| 8 | 5 7 | nfbid | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝜓 ↔ 𝑦 = 𝑧 ) ) |
| 9 | 1 8 | nfald2 | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) ) |
| 10 | 4 9 | nfabd | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } ) |
| 11 | 10 | nfunid | ⊢ ( 𝜑 → Ⅎ 𝑥 ∪ { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } ) |
| 12 | 3 11 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 𝜓 ) ) |