This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfiota . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfiotadw when possible. (Contributed by NM, 18-Feb-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfiotad.1 | |- F/ y ph |
|
| nfiotad.2 | |- ( ph -> F/ x ps ) |
||
| Assertion | nfiotad | |- ( ph -> F/_ x ( iota y ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfiotad.1 | |- F/ y ph |
|
| 2 | nfiotad.2 | |- ( ph -> F/ x ps ) |
|
| 3 | dfiota2 | |- ( iota y ps ) = U. { z | A. y ( ps <-> y = z ) } |
|
| 4 | nfv | |- F/ z ph |
|
| 5 | 2 | adantr | |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
| 6 | nfeqf1 | |- ( -. A. x x = y -> F/ x y = z ) |
|
| 7 | 6 | adantl | |- ( ( ph /\ -. A. x x = y ) -> F/ x y = z ) |
| 8 | 5 7 | nfbid | |- ( ( ph /\ -. A. x x = y ) -> F/ x ( ps <-> y = z ) ) |
| 9 | 1 8 | nfald2 | |- ( ph -> F/ x A. y ( ps <-> y = z ) ) |
| 10 | 4 9 | nfabd | |- ( ph -> F/_ x { z | A. y ( ps <-> y = z ) } ) |
| 11 | 10 | nfunid | |- ( ph -> F/_ x U. { z | A. y ( ps <-> y = z ) } ) |
| 12 | 3 11 | nfcxfrd | |- ( ph -> F/_ x ( iota y ps ) ) |