This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015) (Revised by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nffr.r | ⊢ Ⅎ 𝑥 𝑅 | |
| nffr.a | ⊢ Ⅎ 𝑥 𝐴 | ||
| Assertion | nffr | ⊢ Ⅎ 𝑥 𝑅 Fr 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nffr.r | ⊢ Ⅎ 𝑥 𝑅 | |
| 2 | nffr.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | df-fr | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑎 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝑎 | |
| 5 | 4 2 | nfss | ⊢ Ⅎ 𝑥 𝑎 ⊆ 𝐴 |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝑎 ≠ ∅ | |
| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑥 ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝑐 | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝑏 | |
| 10 | 8 1 9 | nfbr | ⊢ Ⅎ 𝑥 𝑐 𝑅 𝑏 |
| 11 | 10 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝑐 𝑅 𝑏 |
| 12 | 4 11 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 |
| 13 | 4 12 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 |
| 14 | 7 13 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 ) |
| 15 | 14 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑎 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 ) |
| 16 | 3 15 | nfxfr | ⊢ Ⅎ 𝑥 𝑅 Fr 𝐴 |