This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015) (Revised by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nffr.r | |- F/_ x R |
|
| nffr.a | |- F/_ x A |
||
| Assertion | nffr | |- F/ x R Fr A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nffr.r | |- F/_ x R |
|
| 2 | nffr.a | |- F/_ x A |
|
| 3 | df-fr | |- ( R Fr A <-> A. a ( ( a C_ A /\ a =/= (/) ) -> E. b e. a A. c e. a -. c R b ) ) |
|
| 4 | nfcv | |- F/_ x a |
|
| 5 | 4 2 | nfss | |- F/ x a C_ A |
| 6 | nfv | |- F/ x a =/= (/) |
|
| 7 | 5 6 | nfan | |- F/ x ( a C_ A /\ a =/= (/) ) |
| 8 | nfcv | |- F/_ x c |
|
| 9 | nfcv | |- F/_ x b |
|
| 10 | 8 1 9 | nfbr | |- F/ x c R b |
| 11 | 10 | nfn | |- F/ x -. c R b |
| 12 | 4 11 | nfralw | |- F/ x A. c e. a -. c R b |
| 13 | 4 12 | nfrexw | |- F/ x E. b e. a A. c e. a -. c R b |
| 14 | 7 13 | nfim | |- F/ x ( ( a C_ A /\ a =/= (/) ) -> E. b e. a A. c e. a -. c R b ) |
| 15 | 14 | nfal | |- F/ x A. a ( ( a C_ A /\ a =/= (/) ) -> E. b e. a A. c e. a -. c R b ) |
| 16 | 3 15 | nfxfr | |- F/ x R Fr A |