This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Founded and well-ordering relations
nffr
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for well-founded relations.
(Contributed by Stefan O'Rear , 20-Jan-2015) (Revised by Mario
Carneiro , 14-Oct-2016)
Ref
Expression
Hypotheses
nffr.r
⊢ Ⅎ _ x R
nffr.a
⊢ Ⅎ _ x A
Assertion
nffr
⊢ Ⅎ x R Fr A
Proof
Step
Hyp
Ref
Expression
1
nffr.r
⊢ Ⅎ _ x R
2
nffr.a
⊢ Ⅎ _ x A
3
df-fr
⊢ R Fr A ↔ ∀ a a ⊆ A ∧ a ≠ ∅ → ∃ b ∈ a ∀ c ∈ a ¬ c R b
4
nfcv
⊢ Ⅎ _ x a
5
4 2
nfss
⊢ Ⅎ x a ⊆ A
6
nfv
⊢ Ⅎ x a ≠ ∅
7
5 6
nfan
⊢ Ⅎ x a ⊆ A ∧ a ≠ ∅
8
nfcv
⊢ Ⅎ _ x c
9
nfcv
⊢ Ⅎ _ x b
10
8 1 9
nfbr
⊢ Ⅎ x c R b
11
10
nfn
⊢ Ⅎ x ¬ c R b
12
4 11
nfralw
⊢ Ⅎ x ∀ c ∈ a ¬ c R b
13
4 12
nfrexw
⊢ Ⅎ x ∃ b ∈ a ∀ c ∈ a ¬ c R b
14
7 13
nfim
⊢ Ⅎ x a ⊆ A ∧ a ≠ ∅ → ∃ b ∈ a ∀ c ∈ a ¬ c R b
15
14
nfal
⊢ Ⅎ x ∀ a a ⊆ A ∧ a ≠ ∅ → ∃ b ∈ a ∀ c ∈ a ¬ c R b
16
3 15
nfxfr
⊢ Ⅎ x R Fr A