This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer not being a member of a half-open finite set of integers. (Contributed by AV, 29-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelfzo | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∉ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | ⊢ ( 𝐾 ∉ ( 𝑀 ..^ 𝑁 ) ↔ ¬ 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ) | |
| 2 | ianor | ⊢ ( ¬ ( 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁 ) ↔ ( ¬ 𝑀 ≤ 𝐾 ∨ ¬ 𝐾 < 𝑁 ) ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁 ) ↔ ( ¬ 𝑀 ≤ 𝐾 ∨ ¬ 𝐾 < 𝑁 ) ) ) |
| 4 | elfzo | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁 ) ) ) | |
| 5 | 4 | notbid | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ¬ ( 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁 ) ) ) |
| 6 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 7 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 8 | 6 7 | anim12i | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 10 | ltnle | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 < 𝑀 ↔ ¬ 𝑀 ≤ 𝐾 ) ) |
| 12 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 13 | 6 12 | anim12ci | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ ) ) |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ ) ) |
| 15 | lenlt | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑁 ≤ 𝐾 ↔ ¬ 𝐾 < 𝑁 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ 𝐾 ↔ ¬ 𝐾 < 𝑁 ) ) |
| 17 | 11 16 | orbi12d | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾 ) ↔ ( ¬ 𝑀 ≤ 𝐾 ∨ ¬ 𝐾 < 𝑁 ) ) ) |
| 18 | 3 5 17 | 3bitr4d | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾 ) ) ) |
| 19 | 1 18 | bitrid | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∉ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾 ) ) ) |