This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer not being a member of a half-open finite set of integers. (Contributed by AV, 29-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelfzo | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e/ ( M ..^ N ) <-> ( K < M \/ N <_ K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | |- ( K e/ ( M ..^ N ) <-> -. K e. ( M ..^ N ) ) |
|
| 2 | ianor | |- ( -. ( M <_ K /\ K < N ) <-> ( -. M <_ K \/ -. K < N ) ) |
|
| 3 | 2 | a1i | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M <_ K /\ K < N ) <-> ( -. M <_ K \/ -. K < N ) ) ) |
| 4 | elfzo | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ( M ..^ N ) <-> ( M <_ K /\ K < N ) ) ) |
|
| 5 | 4 | notbid | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. K e. ( M ..^ N ) <-> -. ( M <_ K /\ K < N ) ) ) |
| 6 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 7 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 8 | 6 7 | anim12i | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( K e. RR /\ M e. RR ) ) |
| 9 | 8 | 3adant3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. RR /\ M e. RR ) ) |
| 10 | ltnle | |- ( ( K e. RR /\ M e. RR ) -> ( K < M <-> -. M <_ K ) ) |
|
| 11 | 9 10 | syl | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K < M <-> -. M <_ K ) ) |
| 12 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 13 | 6 12 | anim12ci | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( N e. RR /\ K e. RR ) ) |
| 14 | 13 | 3adant2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( N e. RR /\ K e. RR ) ) |
| 15 | lenlt | |- ( ( N e. RR /\ K e. RR ) -> ( N <_ K <-> -. K < N ) ) |
|
| 16 | 14 15 | syl | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( N <_ K <-> -. K < N ) ) |
| 17 | 11 16 | orbi12d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K < M \/ N <_ K ) <-> ( -. M <_ K \/ -. K < N ) ) ) |
| 18 | 3 5 17 | 3bitr4d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. K e. ( M ..^ N ) <-> ( K < M \/ N <_ K ) ) ) |
| 19 | 1 18 | bitrid | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e/ ( M ..^ N ) <-> ( K < M \/ N <_ K ) ) ) |