This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a set with two distinct elements. (Contributed by Thierry Arnoux, 27-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nehash2.p | |- ( ph -> P e. V ) |
|
| nehash2.a | |- ( ph -> A e. P ) |
||
| nehash2.b | |- ( ph -> B e. P ) |
||
| nehash2.1 | |- ( ph -> A =/= B ) |
||
| Assertion | nehash2 | |- ( ph -> 2 <_ ( # ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nehash2.p | |- ( ph -> P e. V ) |
|
| 2 | nehash2.a | |- ( ph -> A e. P ) |
|
| 3 | nehash2.b | |- ( ph -> B e. P ) |
|
| 4 | nehash2.1 | |- ( ph -> A =/= B ) |
|
| 5 | hashprg | |- ( ( A e. P /\ B e. P ) -> ( A =/= B <-> ( # ` { A , B } ) = 2 ) ) |
|
| 6 | 2 3 5 | syl2anc | |- ( ph -> ( A =/= B <-> ( # ` { A , B } ) = 2 ) ) |
| 7 | 4 6 | mpbid | |- ( ph -> ( # ` { A , B } ) = 2 ) |
| 8 | 2 3 | prssd | |- ( ph -> { A , B } C_ P ) |
| 9 | hashss | |- ( ( P e. V /\ { A , B } C_ P ) -> ( # ` { A , B } ) <_ ( # ` P ) ) |
|
| 10 | 1 8 9 | syl2anc | |- ( ph -> ( # ` { A , B } ) <_ ( # ` P ) ) |
| 11 | 7 10 | eqbrtrrd | |- ( ph -> 2 <_ ( # ` P ) ) |