This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ndvdsi.1 | ⊢ 𝐴 ∈ ℕ | |
| ndvdsi.2 | ⊢ 𝑄 ∈ ℕ0 | ||
| ndvdsi.3 | ⊢ 𝑅 ∈ ℕ | ||
| ndvdsi.4 | ⊢ ( ( 𝐴 · 𝑄 ) + 𝑅 ) = 𝐵 | ||
| ndvdsi.5 | ⊢ 𝑅 < 𝐴 | ||
| Assertion | ndvdsi | ⊢ ¬ 𝐴 ∥ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndvdsi.1 | ⊢ 𝐴 ∈ ℕ | |
| 2 | ndvdsi.2 | ⊢ 𝑄 ∈ ℕ0 | |
| 3 | ndvdsi.3 | ⊢ 𝑅 ∈ ℕ | |
| 4 | ndvdsi.4 | ⊢ ( ( 𝐴 · 𝑄 ) + 𝑅 ) = 𝐵 | |
| 5 | ndvdsi.5 | ⊢ 𝑅 < 𝐴 | |
| 6 | 1 | nnzi | ⊢ 𝐴 ∈ ℤ |
| 7 | 2 | nn0zi | ⊢ 𝑄 ∈ ℤ |
| 8 | dvdsmul1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → 𝐴 ∥ ( 𝐴 · 𝑄 ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ 𝐴 ∥ ( 𝐴 · 𝑄 ) |
| 10 | zmulcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( 𝐴 · 𝑄 ) ∈ ℤ ) | |
| 11 | 6 7 10 | mp2an | ⊢ ( 𝐴 · 𝑄 ) ∈ ℤ |
| 12 | 3 5 | pm3.2i | ⊢ ( 𝑅 ∈ ℕ ∧ 𝑅 < 𝐴 ) |
| 13 | ndvdsadd | ⊢ ( ( ( 𝐴 · 𝑄 ) ∈ ℤ ∧ 𝐴 ∈ ℕ ∧ ( 𝑅 ∈ ℕ ∧ 𝑅 < 𝐴 ) ) → ( 𝐴 ∥ ( 𝐴 · 𝑄 ) → ¬ 𝐴 ∥ ( ( 𝐴 · 𝑄 ) + 𝑅 ) ) ) | |
| 14 | 11 1 12 13 | mp3an | ⊢ ( 𝐴 ∥ ( 𝐴 · 𝑄 ) → ¬ 𝐴 ∥ ( ( 𝐴 · 𝑄 ) + 𝑅 ) ) |
| 15 | 9 14 | ax-mp | ⊢ ¬ 𝐴 ∥ ( ( 𝐴 · 𝑄 ) + 𝑅 ) |
| 16 | 4 | breq2i | ⊢ ( 𝐴 ∥ ( ( 𝐴 · 𝑄 ) + 𝑅 ) ↔ 𝐴 ∥ 𝐵 ) |
| 17 | 15 16 | mtbi | ⊢ ¬ 𝐴 ∥ 𝐵 |