This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No element covers the lattice unity. (Contributed by NM, 8-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ncvr1.b | |- B = ( Base ` K ) |
|
| ncvr1.u | |- .1. = ( 1. ` K ) |
||
| ncvr1.c | |- C = ( |
||
| Assertion | ncvr1 | |- ( ( K e. OP /\ X e. B ) -> -. .1. C X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ncvr1.b | |- B = ( Base ` K ) |
|
| 2 | ncvr1.u | |- .1. = ( 1. ` K ) |
|
| 3 | ncvr1.c | |- C = ( |
|
| 4 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 5 | 1 4 2 | ople1 | |- ( ( K e. OP /\ X e. B ) -> X ( le ` K ) .1. ) |
| 6 | opposet | |- ( K e. OP -> K e. Poset ) |
|
| 7 | 6 | ad2antrr | |- ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> K e. Poset ) |
| 8 | 1 2 | op1cl | |- ( K e. OP -> .1. e. B ) |
| 9 | 8 | ad2antrr | |- ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> .1. e. B ) |
| 10 | simplr | |- ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> X e. B ) |
|
| 11 | simpr | |- ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> .1. ( lt ` K ) X ) |
|
| 12 | eqid | |- ( lt ` K ) = ( lt ` K ) |
|
| 13 | 1 4 12 | pltnle | |- ( ( ( K e. Poset /\ .1. e. B /\ X e. B ) /\ .1. ( lt ` K ) X ) -> -. X ( le ` K ) .1. ) |
| 14 | 7 9 10 11 13 | syl31anc | |- ( ( ( K e. OP /\ X e. B ) /\ .1. ( lt ` K ) X ) -> -. X ( le ` K ) .1. ) |
| 15 | 14 | ex | |- ( ( K e. OP /\ X e. B ) -> ( .1. ( lt ` K ) X -> -. X ( le ` K ) .1. ) ) |
| 16 | 5 15 | mt2d | |- ( ( K e. OP /\ X e. B ) -> -. .1. ( lt ` K ) X ) |
| 17 | simpll | |- ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> K e. OP ) |
|
| 18 | 8 | ad2antrr | |- ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> .1. e. B ) |
| 19 | simplr | |- ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> X e. B ) |
|
| 20 | simpr | |- ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> .1. C X ) |
|
| 21 | 1 12 3 | cvrlt | |- ( ( ( K e. OP /\ .1. e. B /\ X e. B ) /\ .1. C X ) -> .1. ( lt ` K ) X ) |
| 22 | 17 18 19 20 21 | syl31anc | |- ( ( ( K e. OP /\ X e. B ) /\ .1. C X ) -> .1. ( lt ` K ) X ) |
| 23 | 16 22 | mtand | |- ( ( K e. OP /\ X e. B ) -> -. .1. C X ) |